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ABSTRACT
We demonstrate that, with the availability of distributed
computation platforms such as Amazon Web Services and
open-source tools, it is possible for a small engineering team
to build, launch and maintain a cost-effective, large-scale
visual search system. We also demonstrate, through a com-
prehensive set of live experiments at Pinterest, that content
recommendation powered by visual search improves user en-
gagement. By sharing our implementation details and learn-
ings from launching a commercial visual search engine from
scratch, we hope visual search becomes more widely incor-
porated into today’s commercial applications.

Categories and Subject Descriptors
H.3.3 [Information Systems Applications]: Search Pro-
cess; I.4.9 [Image Processing and Computer Vision]:
Application

General Terms
information retrieval, computer vision, deep learning, dis-
tributed systems

Keywords
visual search, visual shopping, open source

1. INTRODUCTION
Visual search, or content-based image retrieval [5], is an

active research area driven in part by the explosive growth of
online photos and the popularity of search engines. Google
Goggles, Google Similar Images and Amazon Flow are sev-
eral examples of commercial visual search systems. Although
significant progress has been made in building Web-scale vi-
sual search systems, there are few publications describing
end-to-end architectures deployed on commercial applica-
tions. This is in part due to the complexity of real-world
visual search systems, and in part due to business consider-
ations to keep core search technology proprietary.
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Figure 1: Similar Looks: We apply object detec-
tion to localize products such as bags and shoes. In
this prototype, users click on automatically tagged
objects to view similar-looking products.

We faced two main challenges in deploying a commercial
visual search system at Pinterest. First, as a startup we
needed to control the development cost in the form of both
human and computational resources. For example, feature
computation can become expensive with a large and con-
tinuously growing image collection, and with engineers con-
stantly experimenting with new features to deploy, it was
vital for our system to be both scalable and cost effective.
Second, the success of a commercial application is measured
by the benefit it brings to the users (e.g. improved user
engagement) relative to the cost of development and main-
tenance. As a result, our development progress needed to
be frequently validated through A/B experiments with live
user traffic.

In this paper, we describe our approach to deploy a com-
mercial visual search system with those two challenges in
mind. We make two main contributions.

Our first contribution is to present our scalable and cost
effective visual search implementation using widely available
tools, feasible for a small engineering team to implement.
Section 2.1 describes our simple and pragmatic approach to
speeding up and improving the accuracy of object detection
and localization that exploits the rich metadata available
at Pinterest. By decoupling the difficult (and computation-



Figure 2: Related Pins is a product feature that
shows recommendations based on the Pinterest cu-
ration graph.

ally expensive) task of multi-class object detection into cate-
gory classification followed by per-category object detection,
we only need to run (expensive) object detectors on images
with a high probability of containing the object. Section
2.2 presents our distributed pipeline to incrementally add or
update image features using Amazon Web Services, which
avoids wasteful re-computation of unchanged image features.
Section 2.3 presents our distributed indexing and search in-
frastructure built on top of widely available tools.

Our second contribution is to share results of deploying
our visual search infrastructure in two product applications:
Related Pins (Section 3) and Similar Looks (Section 4). For
each application, we use application-specific data sets to
evaluate the effectiveness of each visual search component
(object detection, feature representations for similarity) in
isolation. After deploying the end-to-end system, we use
A/B tests to measure user engagement on live traffic.

Related Pins (Figure 2) is a feature that recommends Pins
based on the Pin the user is currently viewing. These rec-
ommendations are primarily generated from the “curation
graph” of users, boards, and Pins. However, there is a long
tail of less popular Pins without recommendations. Using
visual search, we generate recommendations for almost all
Pins on Pinterest. Our second application, Similar Looks
(Figure 1) is a discovery experience we tested specifically
for fashion Pins. It allows users to select a visual query
from regions of interest (e.g. a bag or a pair of shoes) and
identifies visually similar Pins for users to explore or pur-
chase. Instead of using the whole image, visual similarity
is computed between the localized objects in the query and

database images. To our knowledge, this is the first pub-
lished work on object detection/localization in a commer-
cially deployed visual search system.

Our experiments demonstrate that 1) one can achieve very
low false positive rate (less than 1%) with a decent detection
rate by combining the object detection/localization meth-
ods with metadata, 2) using feature representations from
the VGG [22] [3] model significantly improves visual search
accuracy on our Pinterest benchmark datasets, and 3) we
observe significant gains in user engagement when visual
search is used to power Related Pins and Similar Looks ap-
plications.

2. VISUAL SEARCH ARCHITECTURE AT
PINTEREST

Pinterest is a visual bookmarking tool that helps users dis-
cover and save creative ideas. Users pin images to boards,
which are curated collections around particular themes or
topics. This human-curated user-board-image graph con-
tains rich information about the images and their semantic
relationships. For example, when an image is pinned to a
board, it implies a “curatorial link” between the new board
and all other boards the image appears in. Metadata, such
as image annotations, can then be propagated through these
links to describe the image, the image board and the users.

Since the image is the focus of each pin, visual features
play a large role in finding interesting, inspiring and relevant
content for users. In this section we describe the end-to-end
implementation of a visual search system that indexes bil-
lions of images on Pinterest. We address the challenges of
developing a real-world visual search system that balances
cost constraints with the need for fast prototyping. We de-
scribe 1) the features that we extract from images, 2) our
infrastructure for distributed and incremental feature ex-
traction, and 3) our real-time visual search service.

2.1 Image Representation and Features
We extract a variety of features from images, including

local features and “deep features” extracted from the acti-
vation of intermediate layers of deep convolutional neural
networks (CNNs) [6]. We studied architectures based on
AlexNet [15] and VGG [22], extracting feature representa-
tions from fc6 and fc8 layers. These features are binarized
for representation efficiency and compared using Hamming
distance. We use the open-source Caffe [12] framework to
perform training and inference of our CNNs on multi-GPU
machines.

The system also extracts salient color signatures from im-
ages. Salient colors are computed by first detecting salient
regions [25, 4] of the images and then applying k-means clus-
tering to the Lab pixel values of the salient pixels. Cluster
centroids and weights are stored as the color signature of the
image.

Two-step Object Detection and Localization
One feature that is particularly relevant to Pinterest is the
presence of certain object classes, such as bags, shoes, watches,
dresses, and sunglasses. We adopted a two-step detection
approach that leverages the abundance of weak text labels
on Pinterest images. Since images are pinned many times
onto many boards, aggregated pin descriptions and board
titles provide a great deal of information about the image.



Figure 3: Instead of running all object detectors
on all images, we first predict the image categories
using textual metadata, and then apply object de-
tection modules specific to the predicted category.

A text processing pipeline within Pinterest extracts relevant
annotations for images from the raw text, producing short
phrases associated with each image.

We use these annotations to determine which object detec-
tors to run. In Figure 1, we first determined that the image
was likely to contain bags and shoes, and then we proceeded
to apply visual object detectors for those object classes. By
first performing category classification, we only need to run
the object detectors on images with a high prior likelihood
of matching. This filtering step reduces computational cost
as well as false positives.

Our initial approach for object detection was a heavily op-
timized implementation of cascading deformable part-based
models [8]. This detector outputs a bounding box for each
detected object, from which we extract visual descriptors for
the object. Our recent efforts have focused on investigating
the feasibility and performance of deep learning based object
detectors [9, 10, 7].

Our experiment results in Section 4 show that our sys-
tem achieved a very low false positive rate (less than 1%),
which was vital for our application. This two-step approach
also enables us to incorporate other signals into the category
classification. The use of both text and visual signals for ob-
ject detection and localization is widely used [2] [1] [13] for
Web image retrieval and categorization.

Click Prediction
When users browse on Pinterest, they can interact with a
pin by clicking to view it full screen (“close-up”) and subse-
quently clicking through to the off-site source of the content
(a click-through). For each image, we predict close-up rate
(CUR) and click-through rate (CTR) based on its visual fea-
tures. We trained a CNN to learn a mapping from images
to the probability of a user bringing up the close-up view or
clicking through to the content. Both CUR and CTR are
helpful for applications like search ranking, recommendation
systems and ads targeting since we often need to know which
images are more likely to get attention from users.

CNNs have recently become the dominant approach to
many semantic prediction tasks involving visual inputs, in-
cluding classification [16, 15, 23, 3, 21, 14], detection [9, 10,
7], and segmentation [18]. Training a full CNN to learn a
good representation can be time-consuming and requires a
very large corpus of data. We apply transfer learning to
our model by retaining the low-level visual representations
from models trained for other computer vision tasks. The
top layers of the network are fine-tuned for our specific task.
This saves substantial training time and leverages the visual

Figure 4: ROC curves for CUR prediction (left) and
CTR prediction (right).

features learned from a much larger corpus than that of the
target task. We use Caffe to perform this transfer learning.

Figure 4 depicts receiver operating characteristic (ROC)
curves for our CNN-based method, compared with a base-
line based on a “traditional” computer vision pipeline: a
SVM trained with binary labels on a pyramid histogram
of words (PHOW), which performs well on object recogni-
tion datasets such as Caltech-101. Our CNN-based approach
outperforms the PHOW-SVM baseline, and fine-tuning the
CNN from end-to-end yields a significant performance boost
as well. A similar approach was also applied to the task of
detecting pornographic images uploaded to Pinterest with
good results 1.

2.2 Incremental Fingerprinting Service
Most of our vision applications depend on having a com-

plete collection of image features, stored in a format amenable
to bulk processing. Keeping this data up-to-date is challeng-
ing; because our collection comprises over a billion unique
images, it is critical to update the feature set incrementally
and avoid unnecessary re-computation whenever possible.

We built a system called the Incremental Fingerprinting
Service, which computes image features for all Pinterest im-
ages using a cluster of workers on Amazon EC2. It incre-
mentally updates the collection of features under two main
change scenarios: new images uploaded to Pinterest, and
feature evolution (features added/modified by engineers).

Our approach is to split the image collection into epochs
grouped by upload date, and to maintain a separate feature
store for each version of each feature type (global, local,
deep features). Features are stored in bulk on Amazon S3,
organized by feature type, version, and date. When the
data is fully up-to-date, each feature store contains all the
epochs. On each run, the system detects missing epochs for
each feature and enqueues jobs into a distributed queue to
populate those epochs.

This storage scheme enables incremental updates as fol-
lows. Every day, a new epoch is added to our collection with
that day’s unique uploads, and we generate the missing fea-
tures for that date. Since old images do not change, their
features are not recomputed. If the algorithm or parameters

1By fine-tuning a network for three-class classification of
ignore, softcore, and porn images, we are able to achieve a
validation accuracy of 83.2%. When formulated as a binary
classification between ignore and softcore/porn categories,
the classifier achieved a ROC AUC score of 93.6%.



1. Find New Image 
Signatures

Pinterest pin 
database

2.  Enqueuer

3. Feature Computation Queue
(20 - 600 compute nodes)

4. Sorted Merge
for each epoch

5. VisualJoiner

Signature Lists

(initial epoch)
(delta date epoch)

Individual Feature Files

(initial epoch)

(delta date epoch)

Fingerprint Files (all features)

(initial epoch)
(delta date epoch)

VisualJoin
(Random Access Format)

visualjoin/00000
…

visualjoin/01800

sig/dt=2014-xx-xx/{000..999}

color/dt=2014-xx-xx/{000..999}
deep/dt=2014-xx-xx/{000..999}

…

merged/dt=2014-xx-xx/{000..999}

sig/dt=2015-01-06/{000..004}

merged/dt=2015-01-06/{000.004}

color/dt=2015-01-06/{000..004}
deep/dt=2015-01-06/{000..004}

…

work chunks

work chunks recombined

Other Visual Data Sources
(visual annotations,

deduplicated signature, …)

Figure 5: Examples of outputs generated by incre-
mental fingerprint update pipeline. The initial run
is shown as 2014-xx-xx which includes all the images
created before that run.

for generating a feature are modified, or if a new feature is
added, a new feature store is started and all of the epochs
are computed for that feature. Unchanged features are not
affected.

We copy these features into various forms for more con-
venient access by other jobs: features are merged to form a
fingerprint containing all available features of an image, and
fingerprints are copied into sharded, sorted files for random
access by image signature (MD5 hash). These joined finger-
print files are regularly re-materialized, but the expensive
feature computation needs only be done once per image.

A flow chart of the incremental fingerprint update pro-
cess is shown in Figure 5. It consists of five main jobs: job
(1) compiles a list of newly uploaded image signatures and
groups them by date into epochs. We randomly divide each
epoch into sorted shards of approximately 200,000 images
to limit the size of the final fingerprint files. Job (2) identi-
fies missing epochs in each feature store and enqueues jobs
into PinLater (a distributed queue service similar to Ama-
zon SQS). The jobs subdivide the shards into“work chunks”,
tuned such that each chunk takes approximate 30 minutes to
compute. Job (3) runs on an automatically-launched cluster
of EC2 instances, scaled depending on the size of the update.
Spot instances can be used; if an instance is terminated, its
job is rescheduled on another worker. The output of each
work chunk is saved onto S3, and eventually recombined into
feature files corresponding to the original shards.

Job (4) merges the individual feature shards into a unified
fingerprint containing all of the available features for each
image. Job (5) merges fingerprints from all epochs (along
with other metadata) into a sorted, sharded HFile format
allowing for random access (VisualJoins).

The initial computation of all available features on all im-
ages, takes a little over a day using a cluster of several hun-
dred 32-core machines, and produces roughly 5 TB of feature
data. The steady-state requirement to process new images
incrementally is only about 5 machines.

2.3 Search Infrastructure
At Pinterest, there are several use cases for a distributed

visual search system. One use case is to explore similar look-
ing products (Pinterest Similar Looks), and others include
near-duplicate detection and content recommendation. In
all these applications, visually similar results are computed
from distributed indices built on top of the VisualJoins gen-
erated in the previous section. Since each use case has a
different set of performance and cost requirements, our in-
frastructure is designed to be flexible and re-configurable. A
flow chart of the search infrastructure is shown in Figure 6.

As the first step we create distributed image indices from
VisualJoins using Hadoop. Each machine contains indexes
(and features) associated with a randomly sharded subset of
the entire image collection. Two types of indexes are used:
the first is a disk-based (and partially memory cached) token
index associating each vector-quantized feature (i.e. visual
vocabulary token) with a posting list of image document IDs.
This is analogous to a text-based image retrieval system, ex-
cept text is replaced by visual tokens. The second index is
an in-memory store of visual features and metadata such as
image annotations and “topic vectors” computed from the
user-board-image graph. The first part is used for fast (but
imprecise) lookup, and the second part is used for more ac-
curate (but slower) ranking refinement.
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Figure 6: A flow chart of the distributed visual
search pipeline.

Each machine runs a leaf ranker, which computes the k
nearest neighbors from the indices using visual features, and
then re-ranks the top candidates using additional metadata.
In some cases, the leaf ranker skips the token index and
directly retrieves the k nearest neighbor images from the
feature tree index using approximate KNN methods such
as [19]. A root ranker hosted on another machine will re-
trieve the top results from each of the leaf rankers, merge
the results, and return them to the users. To handle new
fingerprints generated with our real-time feature extractor,
we have an online version of the visual search pipeline where
a very similar process occurs. With the online version how-
ever, the given fingerprint is queried on pre-generated in-
dices.

3. APPLICATION 1: RELATED PINS
One of the first applications of Pinterest’s visual search

pipeline was within a recommendations product called Re-
lated Pins, which recommends other images a user may be
interested in when viewing a Pin. Traditionally, we have
used a combination of user-curated image-to-board relation-
ships and content-based signals to generate these recommen-
dations. However, this system is unable to provide recom-
mendations for less popular Pins (which do not have many
connections) and newly created Pins (which may not have
been indexed yet). As a result, 6% of images at Pinterest
have very few or no recommendations. For these images, we
used our visual search pipeline to generate Visual Related
Pins in real time, as shown in Figure 7.

The first step of the Visual Related Pins product is to
use the local token index built from all existing Pinterest
images to detect if we have near duplicates to the query im-
age. Specifically, given a query image, the system returns
a set of images that are variations of the same image but
altered through transformation such as resizing, cropping,

Figure 7: Before and after incorporating Visual Re-
lated Pins

rotation, translation, adding, deleting and altering minor
parts of the visual content. Since the resulting images look
visually identical to the query image, their recommenda-
tions are most likely relevant to the query image. In most
cases, however, we found that there are either no near du-
plicates detected or the near duplicates do not have enough
recommendations. Thus, we focused most of our attention
on retrieving visual search results generated from an index
based on CNN features.

Static Evaluation of Search Relevance
Our initial Visual Related Pins experiment utilized features
from the original and fine-tuned versions of the AlexNet
model in its search infrastructure. However, recent successes
with deeper CNN architectures for classification led us to in-
vestigate the performance of feature sets from a variety of
CNN models.

To conduct evaluation for visual search, we used the im-
age annotations associated with the images as proxy for rel-
evancy. This approach is commonly used for offline eval-
uation of visual search systems [20] in addition to human
evaluation. In this work, we used top text queries associ-
ated with each image as labels. We retrieved 3,000 images
per query for 1,000 queries using Pinterest Search, which
yielded a dataset with about 1.6 million unique images. We
labeled each image with the query that produced it. A vi-
sual search result is assumed to be relevant to a query image
if the two images share a label.

With this dataset, we computed precision@k for recom-
mendations based on several features: the fc6 layer ac-
tivations from the generic AlexNet model (pre-trained for
ILSVRC) [15], the fc6 activations of an AlexNet model fine-
tuned to recognize over 3,000 Pinterest product categories,
the loss3/classifier activations of a generic GoogLeNet [23],



Table 1: Relevance of visual search.
Model p@5 p@10 latency
Generic AlexNet 0.051 0.040 193ms
Pinterest AlexNet 0.234 0.210 234ms
Generic GoogLeNet 0.223 0.202 1207ms
Generic VGG-16 0.302 0.269 642ms

Figure 8: Visual Related Pins increases total Re-
lated Pins repins on Pinterest by 2%.

and the fc6 activations of a generic VGG 16-layer model [3].
Table 1 shows p@5 and p@10 performance of these mod-
els, along with the average CPU-based latency of our vi-
sual search service, which includes feature extraction for the
query image as well as retrieval. Using GPU-based infer-
ence dramatically reduces these latencies. We observed a
substantial gain in precision against our evaluation dataset
when using the FC6 features of the VGG 16-layer model,
with an acceptable latency for our applications.

Live Experiments
We set up a system to detect new Pins with few recom-
mendations, query our visual search system, and store their
results in HBase to serve during Pin close-up.

For this application, we show visual search results when
a majority share a common category (category conformity
thresholding). We chose to trade off coverage for greater
precision in this manner to avoid using visual search when
we have relatively low confidence in its results.

We initially launched the experiment to 10% of eligible live
traffic; users were eligible when they viewed a Pin close-up
that did not have enough recommendations. Eligible users
were triggered into either a treatment group (in which we
replaced the Related Pins section with visual search results),
or a control group (in which we did not alter the experience).
We measured the change in total repin activity2 within the
Related Pins section.

By displaying visually similar pins for just the 6% of queries
that would otherwise have empty recommendations, we ob-
served a 2% increase in total re-pin actions on Related Pins
(Figure 8). Furthermore, we performed another experiment
in which we reranked all recommendations using deep CNN
feature similarity, achieving a 10% increase in re-pin and
click-through engagement.

2Repinning is the action of adding an existing Pinterest Pin
to a board. Repins are one of our standard top-line metrics
for measuring engagement.

4. APPLICATION 2: SIMILAR LOOKS
One of the most popular categories on Pinterest is women’s

fashion. However, a large percentage of pins in this category
do not direct users to a shopping experience, and therefore
are not actionable. There are two challenges towards making
these Pins actionable: 1) Many pins feature editorial shots
such as “street style” outfits, which often link to a website
with little additional information on the items featured in
the image; 2) Pin images often contain multiple objects (e.g.
a woman walking down the street, with a leopard-print bag,
black boots, sunglasses, torn jeans, etc.) A user looking at
the Pin might be interested in learning more about the bag,
while another user might want to buy the sunglasses.

User research revealed this to be a common frustration,
and our data indicated that users are much less likely to
click through to the external Website on women’s fashion
Pins, relative to other categories.

To address this problem, we built a product called “Simi-
lar Looks”, which localizes and classifies fashion objects (Fig-
ure 9). We use object recognition to detect products such as
bags, shoes, pants, and watches in Pin images. From these
objects, we extract visual and semantic features to generate
product recommendations (“Similar Looks”). A user would
discover the recommendations via a red dot displayed on
the object in the Pin (see Figure 1). Clicking on the red dot
loads a feed of Pins featuring visually similar objects (e.g.
other visually similar blue dresses).

Related Work
Applying visual search to “soft goods” has been explored
both within academia and industry. Like.com, Google Shop-
ping, and Zappos (owned by Amazon) are a few well-known
applications of computer vision to fashion recommendations.
Baidu and Alibaba also recently launched visual search sys-
tems targeting similar problems. There is also a growing
amount of research on vision-based fashion recommenda-
tions [24, 17, 11]. Our approach demonstrates the feasibility
of an object-based visual search system for tens of millions of
Pinterest users and exposes an interactive search experience
around these detected objects.

Static Evaluation of Object Localization
The first step of evaluating our Similar Looks product was
to investigate our object localization and detection capabil-
ities. We chose to focus on fashion objects because of the
aforementioned business need and because “soft goods” tend
to have distinctive visual shapes (e.g. shorts, bags, glasses).

We collected our evaluation dataset by randomly sampling
a set of images from Pinterest’s women’s fashion category,
and manually labeling 2,399 fashion objects in 9 categories
(shoes, dress, glasses, bag, watch, pants, shorts, bikini, earn-
ings) on the images by drawing a rectangular crop over the
objects. We observed that shoes, bags, dresses and pants
were the four largest categories in our evaluation dataset.
Shown in Table 2 is the distribution of fashion objects as
well as the detection accuracies from the text-based filter,
image-based detection, and the combined approach (where
text filters are applied prior to object detection).

As previously described, the text-based approach applies
manually crafted rules, such as regular expressions, to the
Pinterest metadata associated with images (which we treat
as weak labels). For example, an image annotated with
“spring fashion, tote with flowers” will be classified as “bag,”



Figure 9: Once a user clicks on the red dot, the sys-
tem shows products that have a similar appearance
to the query object.

Table 2: Object detection/classification accuracy
(%)

Text Img Both
Objects # TP FP TP FP TP FP
shoe 873 79.8 6.0 41.8 3.1 34.4 1.0
dress 383 75.5 6.2 58.8 12.3 47.0 2.0
glasses 238 75.2 18.8 63.0 0.4 50.0 0.2
bag 468 66.2 5.3 59.8 2.9 43.6 0.5
watch 36 55.6 6.0 66.7 0.5 41.7 0.0
pants 253 75.9 2.0 60.9 2.2 48.2 0.1
shorts 89 73.0 10.1 44.9 1.2 31.5 0.2
bikini 32 71.9 1.0 31.3 0.2 28.1 0.0
earrings 27 81.5 4.7 18.5 0.0 18.5 0.0
Average 72.7 6.7 49.5 2.5 38.1 0.5

and is considered as a positive sample if the image contains a
“bag”object box label. For image-based evaluation, we com-
pute the intersection between the predicted object bounding
box and the labeled object bounding box of the same type,
and count an intersection over union ratio of 0.3 or greater
as a positive match.

Table 2 demonstrates that neither text annotation filters
nor object localization alone were sufficient for our detection
task due to their relatively high false positive rates at 6.7%
and 2.5% respectively. Not surprisingly, combining two ap-
proaches significantly decreased our false positive rate to less
than 1%.

Specifically, we saw that for classes like glasses, text anno-
tations were insufficient and image-based classification ex-
celled (likely due to the distinctive shape of glasses). For
other classes, such as dress, this situation was reversed (the
false positive rate for our dress detector was high, 12.3%, due
to occlusion and high variance in style for that class, and
adding a text filter dramatically improved results). Aside
from reducing the number of images we needed to process
with our object classifiers, for several object classes (shoe,
bag, pants), we observed that text filtering was crucial to
achieve an acceptable false positive rate (under 1%).

Figure 10: Engagement rates for Similar Looks ex-
periment

Live Experiments
Our system identified over 80 million“clickable”objects from
a subset of Pinterest images. A clickable red dot is placed
upon the detected object. Once the user clicks on the dot,
our visual search system retrieves a collection of Pins with
other instances of the object class, ranked by visually sim-
ilarity to the query object. We launched the system to a
small percentage of Pinterest live traffic and collected user
engagement metrics for one month. Specifically, we looked
at the clickthrough rate (CTR) of the dot, the CTR on our
visual search results, and we compared engagement on Sim-
ilar Look results with the engagement on existing Related
Pins recommendations.

As shown in Figure 10, on average, 12% of users who
viewed a pin with a dot clicked on a dot in a given day.
Those users went on to click an average of 0.55 Similar
Looks results. Although this data was encouraging, when
we compared engagement with all related content on the
pin close-up (summing both engagement with Related Pins
and Similar Look results for the treatment group, and just
Related Pins engagement for the control), Similar Looks ac-
tually hurt overall engagement on the pin close-up by 4%.
After the novelty effort wore off, we saw a gradual decrease
in CTR on the red dots, which stabilized at around 10%.

To test the relevance of our Similar Looks results indepen-
dently of the newly introduced UI (the clickable object dots),
we ran an experiment in which we blended Similar Looks re-
sults directly into the existing Related Pins. This gave us
a way to directly measure whether users found our visually
similar recommendations more relevant than our existing
non-visual recommendations. On pins where we detected an
object, this experiment increased overall engagement (repins
and close-ups) in Related Pins by 5%. Although we set an
initial static blending ratio for this experiment (one visually
similar result for every three non-visual results), we later
adjusted this ratio dynamically using user click data.

5. CONCLUSION AND FUTURE WORK
We demonstrate that, with the availability of distributed

computational platforms such as Amazon Web Services and



Figure 12: Samples of object detection and localization results for bags. [Green: ground truth, blue: detected
objects.]

Figure 13: Samples of object detection and localization results for shoes.



Figure 14: Samples of object detection and localization results for dresses

open-source tools, it is possible for a handful of engineers or
an academic lab to build a large-scale visual search system
using a combination of non-proprietary tools. This paper
presented our end-to-end visual search pipeline, including
incremental feature updating and two-step object detection
and localization method that improves search accuracy and
reduces development and deployment costs. Our live prod-
uct experiments demonstrate that visual search features can
increase user engagement.

We plan to further improve our system in the following ar-
eas. First, we are interested in investigating the performance
and efficiency of CNN based object detection methods in the
context of live visual search systems. Second, we are inter-
ested in leveraging Pinterest “curation graph” to enhance
visual search relevance. Lastly, we want to experiment with
alternative interactive interfaces for visual search.
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